Blog Detail

  • Home
  • Классификация двигателей дизельных: Двигатель. Классификация, механизмы и системы ДВС

Классификация двигателей дизельных: Двигатель. Классификация, механизмы и системы ДВС

устройство, принцип работы и классификация

Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания, плюсах и минусах ДВС – в нашем материале.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.  

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.

Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Дизельные двигатели

Французский ученый С. Карно в 1824 году создал основы термодинамики. В этой работе он, в числе многого другого, утверждал, что заставить тепловую машину работать наиболее экономично можно, доводя рабочее тело до температуры вспышки топлива сжатием. Фактически он сформулировал принцип, на котором работают дизельные двигатели. Оставалось только взять и сделать такой двигатель. Но этого пришлось ждать еще несколько десятков лет.

В 1892 году немецкий инженер Рудольф Дизель получает патент на первый двигатель (показан на рисунке), работающий на сжатии воздуха до температуры вспышки. В 1987 году первый «дизель-мотор» (так немцы называют двигатель с воспламенением от сжатия) заработал и доказал свою эффективность.

По сравнению с «отто-мотором» (бензиновый двигатель со свечами зажигания) новый двигатель был более тяжелым и поначалу не внушал большого энтузиазма. Но только поначалу. Устройство дизельного двигателя первых образцов включало воздушный компрессор для впрыскивания топлива.

Сам Дизель вначале предполагал применить совсем уж экзотический вариант: угольная пыль. Смесь угольной пыли и воздуха, конечно, способна работать в двигателе, но за сколько часов абразивные частицы съедят кольца, поршни, седла и тарелки клапанов, об этом как-то не подумали. Да и саму угольную пыль получить не так просто.

Из-за тяжелого компрессора двигатель оказывалось невозможно применить на наземном транспорте. Но в работе он расходовал так мало горючего и работа его была настолько устойчивой, что отказаться от него было уже невозможно. Расчеты показывали, что от двигателя можно ожидать значительно большую мощность, если решить проблему с подачей топлива.

У инженеров возникла идея заменить компрессор плунжерным насосом. Качать топливо в жидком виде было чрезвычайно выгодно, на это уходит гораздо меньше энергии, а насос можно сделать совсем небольшим. Однако, изготовить плунжерную пару было не так просто. Дело в особой точности изготовления — расстояние между деталями составляет 2-3 микрона.

Все же дизелям нашлась работа. Впервые они были установлены на немецких подводных лодках еще при кайзере Вильгельме. (Возможно, с этим как раз связано темная история исчезновения самого изобретателя, утонувшего в Ла-Манше по дороге в Англию.)

В 1920 году Роберт Бош наконец, получает качественный плунжерный насос. В цилиндры двигателя научились подавать больше топлива. Теперь обороты дизельного двигателя и его удельная мощность, становятся достаточными для установки на автотранспорте. Вместе с насосом Бош разрабатывает и очень удачную форсунку для топлива.

Сгорание топлива в дизельном двигателе

Проще всего понять, как работает дизельный двигатель, если посмотреть на сгорание топлива в нем. В дизелях используется тяжелое топливо. Это означает, что двигатель внутреннего сгорания такого типа может работать на керосине (известном как солярка), мазуте, сырой нефти, и даже на некоторых растительных маслах.

Все эти виды топлива более калорийны, чем бензин. Так что, рабочая температура дизельного двигателя заметно выше, чем у бензинового. Но тяжелые виды топлива горят хуже, чем бензин, медленнее и трудно поджигаются. Для их воспламенения требуется большая степень сжатия, воздушно-топливная смесь должна нагреваться до 700-800°С.

Вязкость любого из дизельных видов топлива, даже в подогретом состоянии, выше бензиновой, а распылять его необходимо до мельчайшего состояния, особенно в быстроходных дизелях. Еще экспериментальный двигатель Дизеля работал при впрыске топлива под давлением не менее 50 бар (атм), а практический двигатель требует 100-200 бар.

Однако, у тяжелых калорийных топлив есть свое преимущество перед бензином. Давление в цилиндре дизеля практически постоянно на всем такте расширения, поэтому крутящий момент у них весьма значителен и стабилен. Благодаря постоянному давлению, угол опережения зажигания также остается постоянным и регулировки не требует. Ресурс дизельного двигателя больше, чем у бензинового. Есть области, где дизель практически незаменим, например в сельскохозяйственном тракторе.

Разновидности дизельных двигателей

Принцип действия дизельного двигателя для всех из них одинаков: сначала производится сжатие свежего заряда рабочего тела (воздуха), затем впрыскивается топливо. От высокой температуры смесь воспламеняется и сгорает, поднимая давление. Под его действием поршень двигается обратно и в нижней точке выпускной клапан цилиндра открывается, выпуская отработанный газ. В основном, это углекислый газ, дизельные двигатели экологически чище бензиновых.

Камеры сгорания дизелей могут выполняться непосредственно в днище поршня — там делается выемка особой формы — или в ряде случаев используют предкамеры (или форкамеры, как это говорят на родине двигателя). Первый вариант — самый экономичный, второй считался оптимальным в прежние годы. Сейчас, когда экономичность, во многих случаях, считается решающей, от предкамерных вариантов снова отказываются.

Рабочий процесс в дизеле может протекать, как и в бензиновом двигателе, в два или четыре такта. Подавляющее большинство дизелей — четырехтактные. Двухтактные проще реверсировать, поэтому они распространены на морских судах, где применяется жесткая связь с гребным валом. Камеры сгорания в двухтактных дизелях не разделяются из-за очевидных проблем с продувкой форкамеры.

Конструкция дизельного двигателя зависит от его мощности и назначения. Наиболее мощные двигатели, применяемые на судах и некоторых электростанциях, имеют крейцкопф — устройство для снижения боковых сил на поршень. Все мощные дизели имеют сложно устроенное дно, потому, что подвергаются высокой температуре.

Часть, обращенная в цилиндр, делается стальной, а остальная часть поршня (юбка) — алюминиевой. Кроме того, в поршне сделаны канавки для системы масляного охлаждения.

Типы дизельных двигателей различаются и по расположению цилиндров. Бывает рядовое, V-образное и даже такое, при котором цилиндры располагаются с разворотом на 180 градусов. Это зависит от тех условий, которые имеются на месте установки двигателя. Например, на современном грузовике или автобусе, скорее всего, будет применен двухрядный дизель, установленный под полом кабины водителя. Как устроен дизельный двигатель, будет зависеть и от наличия наддува.

Турбонаддув дизелей

Мощность дизельного двигателя, без увеличения расхода топлива, можно повысить при помощи турбокомпрессора. Тогда можно использовать еще неплохой кусочек диаграммы цикла Карно. Эксплуатация дизельного двигателя с турбокомпрессором имеет то преимущество, что используя энергию выхлопных газов можно раскрутить турбину, и на том же валу установить другую турбину — компрессор.

Этот компрессор будет нагнетать воздух, поступающий через впускной коллектор, увеличится заряд воздуха в цилиндрах, и, таким образом, мощность двигателя заметно возрастет. (Работу таких двигателей легко узнать по характерному свисту в момент раскручивания турбины.)

Плюсы и минусы дизелей

Преимущества дизельного двигателя — это высокий и постоянный крутящий момент в сочетании с высокой экологичностью выхлопных газов (это относится, правда, только к современным двигателям). Также вне конкуренции их высокий КПД, самый высокий среди ДВС. Известны дизели (MAN) дающие свыше 50%, (что считалось «теоретическим» максимумом). Там использован максимум всех современных достижений. Экономичность достигает до 40%, если провести сравнение с бензиновыми.

Проблемы дизельных двигателей, а без них техники не бывает, заключаются в тяжелом пуске, из-за высокой степени сжатия (до 25 в современных двигателях), на автомобилях приходится ставить мощный стартер и аккумулятор. Большая точность изготовления деталей насосов высокого давления и форсунок затрудняет обслуживание.

Дизели крайне чувствительны к механическим загрязнениям топлива, для очистки которого приходится применять даже центрифугу в составе топливной аппаратуры. При равном объеме в литрах, дизельный двигатель уступает бензиновому по мощности, при равной мощности дизель тяжелее. Дизельный двигатель требует более качественных сплавов для своего изготовления и заметно дороже бензинового.

И все же, сравнивая преимущества и недостатки дизельного двигателя, можно сделать выбор в пользу дизеля. Особенно этому способствует технический прогресс в области электроники и блоков управления двигателями. Система «общая магистраль» (common rail) и электромагнитные форсунки позволяет сильно упростить ТВНД, а блок управления доводит экономию топлива до максимума, поскольку работает на любых переходных режимах и успевает все отследить.

Типы генераторов и двигателей и промышленное использование

Что такое дизельный двигатель?

Дизельный двигатель является типом двигателя внутреннего сгорания; более конкретно, это двигатель с воспламенением от сжатия. Топливо в дизельном двигателе воспламеняется при внезапном воздействии на него высокой температуры и давления сжатого газа, содержащего кислород (обычно атмосферного воздуха), а не отдельного источника энергии воспламенения (например, свечи зажигания). Этот процесс известен как дизельный цикл в честь Рудольфа Дизеля, который изобрел его в 189 г.2. Хотя традиционные дизельные генераторы могут не подпадать под наше определение «альтернативных источников энергии», они по-прежнему являются ценным дополнением к удаленной системе электроснабжения или резервной сети.

Типы дизельных двигателей

Существует два класса дизельных двигателей: двухтактные и четырехтактные. Большинство дизельных двигателей обычно используют четырехтактный цикл, а некоторые более крупные двигатели работают по двухтактному циклу. Обычно ряды цилиндров используются в количестве, кратном двум, хотя может использоваться любое количество цилиндров, если нагрузка на коленчатый вал уравновешивается для предотвращения чрезмерной вибрации.
Генераторные установки производят либо однофазную, либо трехфазную электроэнергию. Большинству домовладельцев требуется однофазное питание, тогда как для промышленных или коммерческих приложений обычно требуется трехфазное питание. Генераторы с дизельными двигателями рекомендуются из-за их долговечности и более низких эксплуатационных расходов. Современные дизельные двигатели работают тихо и, как правило, требуют гораздо меньшего обслуживания, чем газовые (природный газ или пропан) агрегаты сопоставимого размера.

Дизельные генераторы — Коммерческое/промышленное применение

Дизель-генераторы

предназначены для удовлетворения потребностей малого и среднего бизнеса, помимо интенсивного использования в промышленности. Генератор — это революционный продукт, который обеспечивает чистую и доступную резервную энергию, доступную миллионам предприятий, домов и малых предприятий. В наши дни снижение стоимости резервного питания и упрощение установки генераторов становится нормой.

Предприятия теряют деньги, когда закрываются во время отключения электричества. Принимая во внимание последствия значительных потерь доходов, инвестиции в резервную электроэнергию выглядят убедительно. Чтобы проиллюстрировать это: если розничный бизнес в среднем тратит 1000 долларов в час на кассу, потеря дохода во время длительного простоя будет очень высокой, не говоря уже о затратах на простаивание сотрудников в течение этого времени. Однако дизельные генераторы исключают риск отключения электроэнергии. Добавьте преимущества открытости, когда конкуренты без резервного питания отключены, и анализ затрат/выгод выглядит еще лучше. Инвестирование в генераторы — это простой способ сохранить доход, обеспечить безопасность, избежать убытков и защитить прибыль.

Большинство современных генераторов спроектированы для удовлетворения потребностей в электроэнергии в чрезвычайных ситуациях. Эти блоки постоянно контролируют электрический ток и автоматически запускаются, если питание прерывается, и отключаются, когда возобновляется подача электроэнергии. В промышленности во время критических процессов генераторы могут обеспечивать аварийное питание всех жизненно важных и выбранных нагрузок по желанию. Это качество приводит к широкому использованию дизельных генераторов в рекреационных, жилых, коммерческих, коммуникационных и промышленных целях. Сегодня большинство современных больниц, пятизвездочных отелей, центров аутсорсинга бизнес-процессов, производственных предприятий, телекоммуникационных организаций, коммерческих зданий, центров обработки данных, аварийно-спасательных служб, крупных промышленных предприятий и горнодобывающих компаний требуют бесперебойного питания и резервного дизельного топлива. генераторы двигателей.

В пути:

Подавляющее большинство современных тяжелых дорожных транспортных средств, таких как грузовики и автобусы, корабли, поезда дальнего следования, крупные переносные электрогенераторы, а также большинство сельскохозяйственных и горнодобывающих транспортных средств имеют дизельные двигатели. Однако в некоторых странах они не так популярны в легковых автомобилях, поскольку они тяжелее, шумнее, имеют эксплуатационные характеристики, из-за которых они медленнее разгоняются. В целом, они также дороже бензиновых автомобилей. Современные дизельные двигатели прошли долгий путь, и теперь, когда в автомобилях установлены системы прямого впрыска Turbo, трудно заметить разницу между дизельными и бензиновыми двигателями.

В некоторых странах, где по налоговым ставкам дизельное топливо намного дешевле бензина, очень популярны дизельные автомобили. Новые конструкции значительно сузили различия между бензиновыми и дизельными автомобилями в этих областях. Дизельная лаборатория BMW в Австрии считается мировым лидером в разработке автомобильных дизельных двигателей. После долгого периода с относительно небольшим количеством дизельных автомобилей в своем модельном ряду Mercedes Benz вернулся к автомобилям с дизельным двигателем в 21 веке с упором на высокую производительность.

В сельском хозяйстве тракторы, ирригационные насосы, молотилки и другое оборудование преимущественно работают на дизельном топливе. Строительство является еще одним сектором, который в значительной степени зависит от дизельной энергии. Все бетоноукладчики, скреперы, катки, траншеекопатели и экскаваторы работают на дизельном топливе.

В воздухе:

Несколько самолетов используют дизельные двигатели с конца 19 века.30 с. Новые автомобильные дизельные двигатели имеют отношение мощности к весу, сравнимое с древними конструкциями с искровым зажиганием, и имеют гораздо более высокую эффективность использования топлива. Использование в них электронного зажигания, впрыска топлива и сложных систем управления двигателем также делает их намного проще в эксплуатации, чем серийно выпускаемые авиационные двигатели с искровым зажиганием. Стоимость дизельного топлива по сравнению с бензином вызвала значительный интерес к небольшим самолетам авиации общего назначения с дизельным двигателем, и несколько производителей недавно начали продавать дизельные двигатели для этой цели.

На водах:

Высокоскоростные двигатели используются для питания тракторов, грузовиков, яхт, автобусов, автомобилей, компрессоров, генераторов и насосов. Самые большие дизельные двигатели используются для питания кораблей и лайнеров в открытом море. Эти огромные двигатели имеют выходную мощность до 90 000 кВт, вращаются со скоростью от 60 до 100 об / мин и имеют высоту 15 метров.

Под землей:

Сектор горнодобывающей промышленности и добычи полезных ископаемых во всем мире в значительной степени зависит от дизельной энергии для использования природных ресурсов, таких как заполнители, драгоценные металлы, железная руда, нефть, газ и уголь. Экскаваторы и буровые установки с дизельным двигателем выкапывают эти продукты и загружают их в огромные карьерные самосвалы или на ленточные конвейеры, которые также работают на том же топливе. В целом на дизель приходится 72 процента энергии, используемой горнодобывающим сектором.

Как наземные, так и подземные горные работы полагаются на дизельное оборудование для извлечения материалов и загрузки грузовиков. Самое крупное дизельное оборудование с резиновыми колесами, используемое в горнодобывающей промышленности, — это огромные внедорожные грузовики с двигателями мощностью более 2500 лошадиных сил, способные перевозить более 300 тонн груза. Эти гигантские грузовики, катящиеся по земле, представляют собой зрелище.

В больницах

Аварийные резервные генераторы

необходимы в любом крупном медицинском учреждении. Из-за критического характера работы, которую выполняют эти учреждения, и положения, в котором находятся их пациенты, перебои в подаче электроэнергии просто недопустимы. В течение многих лет как военные, так и государственные больницы полагались на генераторные установки промышленной мощности, которые брали на себя управление всякий раз, когда отключается электричество, будь то локальное отключение или крупное стихийное бедствие, такое как ураган или наводнение.

За центрами обработки данных

Компьютеры лежат в основе современной промышленности. Когда серверы и системы выходят из строя, связь может быть потеряна, бизнес останавливается, данные теряются, работники бездействуют, и почти все останавливается. Именно по этой причине почти все коммуникационные и телекоммуникационные компании всех форм обращаются к дизельным генераторам в качестве основного варианта резервного питания. Поскольку надежность их услуг затрагивает так много людей, у них действительно нет другого выбора, кроме как иметь надежный вариант резервного питания как для своего бизнеса, так и для клиентов, которых они обслуживают.

Сводка

Дизель

в подавляющем большинстве используется в большинстве промышленных секторов, потому что он обеспечивает большую мощность на единицу топлива, а его более низкая летучесть делает его более безопасным в обращении. Одна действительно захватывающая перспектива дизельного топлива по сравнению с бензином — возможность полностью исключить потребление бензина. Большинство дизельных двигателей можно заставить сжигать растительное масло вместо дизельного топлива, и все они могут сжигать различные обработанные формы растительного масла без потери срока службы или эффективности.

С Generator Source ваш поиск экономичного и эффективного дизельного двигателя или генератора завершен. Мы предлагаем один из самых больших вариантов промышленных дизельных двигателей и генераторов в мире. Чтобы получить больше информации, просто свяжитесь с нами сегодня!

Классификация дизельных двигателей Введение

Дизельный двигатель — это машина, которая использует дизельное топливо в качестве топлива, сжигает и выделяет тепло в цилиндре и непосредственно использует расширение газа для создания давления, толкающего поршень для выполнения внешней работы. Он широко используется и играет все более важную роль в повседневной жизни. Существует множество методов классификации дизельных двигателей. Сегодня AUTS TECHNOLGY расскажет вам об этом.

       1. Классификация по способу охлаждения

       1) Дизельный двигатель с водяным охлаждением, представляющий собой дизельный двигатель, в котором вода используется в качестве охлаждающей среды для охлаждения таких деталей, как цилиндры и головки цилиндров. Вокруг цилиндра дизельного двигателя имеется водяная рубашка, и для охлаждения цилиндра используется вода. Дизельные двигатели с водяным охлаждением имеют различные методы обработки охлаждающей воды, которые можно разделить на два типа: открытая циркуляция охлаждающей воды и закрытая циркуляция охлаждающей воды. Дизель-генераторные установки обычно используют дизель-генераторные установки с водяным охлаждением.

       2) Дизельный двигатель с воздушным охлаждением, представляющий собой дизельный двигатель, в котором воздух используется в качестве охлаждающей среды для охлаждения таких деталей, как цилиндры и головки цилиндров. Вокруг цилиндра дизельного двигателя имеется множество ребер, которые используют поток наружного воздуха для охлаждения цилиндра. Аварийный резервный источник питания или передвижной источник питания (электромобиль) универсальная дизель-генераторная установка с воздушным охлаждением.

       2. Классификация по воздухозаборнику

       1) Дизельный двигатель с всасыванием относится к дизельному двигателю, в котором воздух, поступающий в цилиндр, не сжимается компрессором, то есть дизельный двигатель непосредственно вдыхает окружающий воздух для работы. Для четырехтактного двигателя его также называют безнаддувным дизельным двигателем.

       2) Дизельный двигатель с наддувом относится к дизельному двигателю, в котором воздух перед поступлением в цилиндр сжимается нагнетателем. После наддува дизеля единичная объемная мощность цилиндра может быть увеличена, но для дизеля с высокой скоростью (от 10 000 до десятков тысяч об/мин) турбонагнетателя ОГ срок службы невелик.

       3. Классификация по способу подачи топлива

       1) Дизельный двигатель с непосредственным впрыском топлива, представляющий собой дизельный двигатель, впрыскивающий топливо непосредственно в открытую или полуоткрытую камеру сгорания.

       2) Дизельный двигатель с непрямым впрыском топлива, представляющий собой дизельный двигатель, в котором топливо впрыскивается в подкамеру отдельной камеры сгорания.

       4. В соответствии с различной классификацией высокоскоростных и низкоскоростных

       1) Тихоходными дизельными двигателями обычно называют дизельные двигатели с частотой вращения коленчатого вала n≤500 об/мин или средней скоростью поршня Vm<6 м/с.

       2) Среднеоборотный дизельный двигатель обычно относится к дизельному двигателю с частотой вращения коленчатого вала 500 об/мин

       3) Высокоскоростными дизельными двигателями обычно называют дизельные двигатели с частотой вращения коленчатого вала n>1000 об/мин или средней скоростью поршня Vm>9 м/с.

       Малооборотные дизельные двигатели в основном используются в качестве главных судовых двигателей, и их низкоскоростные характеристики хорошие. Дизель-генераторные установки обычно используют средне- и высокоскоростные дизельные двигатели. Чем выше обороты дизеля, тем меньше объем, меньше вес на единицу мощности и тем быстрее изнашивается. Устройство имеет небольшие размеры и занимает небольшую площадь. Поэтому для резервных электростанций и аварийных электростанций следует отдавать предпочтение высокооборотным дизелям.

       5. Классификация по рабочему циклу

       1) Двухтактный дизельный двигатель относится к дизельному двигателю, в котором поршень совершает один рабочий цикл за два хода (поворот коленчатого вала на 360°). Двухтактный дизельный двигатель характеризуется большой выходной мощностью на единицу объема цилиндра. В настоящее время отечественные дизель-генераторные установки используются редко.

       2) Четырехтактным дизельным двигателем называется дизельный двигатель, в котором поршень совершает один рабочий цикл за четыре хода (коленчатый вал поворачивается на 720°).

В настоящее время большинство отечественных дизельных двигателей работают в четырехтактном режиме.

       6. Классификация по количеству цилиндров

       1) Одноцилиндровый дизельный двигатель относится к дизельному двигателю только с одним цилиндром.

       2) Многоцилиндровый дизельный двигатель относится к дизельному двигателю с более чем двумя цилиндрами.

       7. Классификация по расположению цилиндров

       1) Вертикальный дизельный двигатель относится к дизельному двигателю, в котором цилиндр расположен над коленчатым валом, а осевая линия перпендикулярна горизонтальной плоскости.

       2) Горизонтальный дизельный двигатель относится к дизельному двигателю, центральная линия цилиндра которого параллельна горизонтальной плоскости. Расположение цилиндров дизеля бывает горизонтальным, звездообразным и Н-образным. В настоящее время для сельскохозяйственных машин, таких как мотоблоки, в этих формах используются только горизонтальные одноцилиндровые дизельные двигатели, а другие формы используются редко.

       3) Рядный дизельный двигатель относится к дизельному двигателю с двумя или более вертикальными цилиндрами, расположенными в ряд. Цилиндры дизеля расположены вертикально в один ряд, который называется однорядным дизелем. Эта форма обычно используется в дизельных двигателях до 6 цилиндров.

       4) V-образный дизельный двигатель относится к дизельному двигателю с двумя или двумя рядами цилиндров, угол между осевыми линиями цилиндров является V-образным, а выходная мощность общего коленчатого вала является общей. Цилиндры дизеля расположены в виде V-образного косого двойного ряда, который называется двухрядным V-образным дизелем. Дизельные двигатели с более чем 8 цилиндрами часто используют эту форму.

       8. Классификация по использованию

       1) Судовой дизельный двигатель.

       2) Дизельные двигатели для сельскохозяйственных машин.

       3) Дизельный двигатель для трактора.

       4) Дизельный двигатель для производства электроэнергии.

       5) Дизельные двигатели для локомотивов.

       6) Дизельные двигатели для автомобилей.

       7) Дизельные двигатели для танков.

       8) Дизельные двигатели для бронетехники.

       9) Дизельные двигатели для строительной техники.

       10) Дизельные двигатели для самолетов.

       11) Дизельные двигатели для мотоциклов.

       12) Дизельные двигатели для малой техники, такой как газонокосилки, электросварочные агрегаты, мощные водяные насосы и т. д.

       9. Классификация по способу управления ручная операция.

       2) Автоматический дизельный двигатель означает, что работа дизельного двигателя может осуществляться автоматически или в отсеке.

       10. Классификация по способу запуска

       1) Дизельный двигатель с ручным запуском относится к небольшому дизельному двигателю, запускаемому вручную.

       2) Дизельный двигатель с электростартером использует пусковую батарею, чтобы запустить двигатель стартера, чтобы запустить дизельный двигатель.

       3) Помогите бензиновому двигателю запустить дизельный двигатель, сначала запустите небольшой бензиновый двигатель с помощью рабочей силы, а затем запустите дизельный двигатель с помощью бензинового двигателя.

       4) Пневматический запуск дизельного двигателя заключается в использовании сжатого воздуха, который проходит через цилиндр и толкает поршень для запуска дизельного двигателя.

       11. Классификация по мощности

       1) Дизельный двигатель малой мощности, как правило, относится к дизельному двигателю мощностью менее 200 кВт.

       2) Дизельный двигатель средней мощности, обычно относится к дизельному двигателю мощностью 200–1000 кВт.

Write a comment